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1. Abstract 

This paper focuses on the automotive component 
failure rate detection using Weibull analysis and 
other survival analysis techniques. Detailed attention 
is paid to three areas: 1) overall failure rates are 
described statistically first, and data cleaning and 
definitions of  ‘failed’ and ‘censored’ data within the 
research time or warranty period are made; 2) 
Kaplan-Meier life curves and Log-rank tests are used 
to compare the component reliability over time and 
explore risks factor related to the component failure; 
3) Weibull regressions, with two and three 
parameters, are applied to fit real-world reliability 
data from different test conditions, and to predict the 
automotive component failure trend over future time. 
The analysis results agree well with real-world test 
data, and provide reasonable prediction of future 
failure trends.    
 

2. Introduction 

Automotive components fail over time, especially 
beyond the warranty time period. It is important to 
study the reasons why automotive components fail, 
and to predict the component reliability trends, 
associated with various manufacturing, 
environmental and testing conditions.  
 
For effective use of a predictive failure analysis of 
automotive components, all of the failures within a 
specific driving time period need to be captured.  
Because any repairs to failed components are free to 
the owner and paid by the manufacturer during the 
manufacturer’s basic warranty coverage period 
(usually 36 months or 36,000 miles), most repair 
records are kept well. These are available to 
investigators and provide information on  what 
components have been repaired or replaced at  

 
 
 
 
 
 
 
specific mileages and time in service. However, as 
soon as the basic warranty (free repair) period is 
over, and owners are required to pay for the repairs,  
there is no central repository to collect 
comprehensive information on failures due to data 
availability, which may lead to limited or incomplete 
analysis beyond the relatively short basic warranty 
window.  In order to overcome this obstacle and to 
capture more insightful failure information within a 
relatively longer period, a data analysis technique 
was developed to utilize the manufacturer’s extended 
warranty data to create a richer and more 
representative sample, from which the data analysis 
could be efficiently utilized, although it is not easy to 
completely avoid data bias when the extended 
warranty programs are slected.  Most manufacturers 
will offer an extended service plan to an owner that 
provides coverage for a specified period beyond the 
basic warranty.  For example the extended warranty 
plan may be for 5 years from purchase and 60,000 
miles, or 5 years/75,000 miles, or 5 years/100,000 
miles, or for 4 years/75,000 miles, etc. and that there 
are typically extended service plans offering different 
levels of coverage on different components (e.g., 
Gold Plan, Platinum Plan, Powertrain Plan). The 
driver may choose a plan that best fits his/her need. 
The data technique developed here requires that 1) all 
vehicles sold with all extended service plans be 
identified, 2) the plan(s) that cover repairs on the 
subject component be identified, 3) that a calculation 
is made to determine average miles per month driven 
for the subject vehicles using records of warranty 
repairs, which provide time in service and mileage at 
the time of repair.  All detailed records of repairs 
associated with time and mileages are then used for 
data analysis.  
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For example, one powertrain component under 
consideration has a population sample size of over 
200,000, the component failures starts around 30,000 
miles, with extended service plans for 60 months, or 
100,000 miles (warranty period or agreements), 
whichever comes first, the data set is termed as ‘Old 
K60’ data of type-1 in this study. Second type of test 
data of this same component may have a different 
failure mode or with a mix of failure modes. For this 
type-2 test, there are three new data sets of interest – 
first new data set has the capture information of 60  
months and 100,000 miles, i.e., the maximum month 
to failure is 60 months, and maximum mileage of 
100,000 miles (‘New K60’ data); Similarly, 2nd new 
data set has the information of 48 month/100,000 
mile capture, i.e., the maximum month to failure is 
48, and with maximum mileage of 100,000 (‘New 
K48’); The third contains the info of 72 
month/100,000 mile capture (‘New K72’). In total, 
there are four sets of data for type 1 and type 2 tests 
of this same component, which are summarized in 
Table 1. 
 
Most reliability test data are closely time-related, and 
failures happened within the warranty time window 
or beyond, a technique of ‘time-to-event’ or survival 
analysis is very suitable for such reliability data, 
especially Weibull model is a well established tool to 
fit the test data and to predict the future failure trend 
beyond the available test duration. The main goals of 
this project are to apply a Weibull model to the 
automotive component reliability analysis, and then 
explore the failure rate over  service time or mileage, 
and to provide some statistically-based insights into 
the component failures by the following process: 
 
• Provide descriptive summary of available failure 

data of a component; 
• Verify the reliability difference over time of the 

component under two different conditions; 
• Explore the component failure probability over 

test time, and compare the failure rates of the 
same component from a few different data sets;  

• Improve the data fitting and prediction by using 
a three-parameter Weibull model, and compare 
with real-world test results.  

 

3. Descriptive Summary of Data 
Sample  

The focused automotive component test data, with 
service plan for 60 months, or 100,000 miles (‘Old 
K60’ of Type-1), can be divided into two sub-groups: 
The first group is “failed event” data (234 failures as 

following Table 1); The second group, ‘Suspension’ 
or ‘Censored’ group, has 4483 observations and has 
no failures within 60 months, further, their future 
failure behavior beyond 60 months are unknown. The 
service time of the ‘censored’ group, at least, all 
passed the ‘Cut-Off’ line of 60 months. Figure 1 on 
next page is helpful to explain the failures within and 
beyond a warranty time, or research time window. 
 
The similar descriptive summaries of three new data 
sets (New K60, New K48, and New K72) are also 
listed in following Table 1, with the failure data 
descriptive summary. 
 
 
Table1: Descriptive Statistics for Failed 
Components      
 mean Std 

Dev. 
Min Max failure/ 

all % 

   Type-1: Old K60 Data (234 failures, 4483 censors) 
Month 44.3 9.92 19.0 60 5.0% 
   Type-2: New K60 Data (280 failures & 4474 censors) 
Month 43.3 10.14 14.0 60 5.89% 

Mile 70,597 17,326 27,920 126,288  
   Type-2: New K72 Data (164 failures & 2282 censors) 
Month 42.24 13.68 9.0 68 6.70% 

Mile 60,097 17,513 21,290 98,958  
   Type-2: New K48 Data (54 failures and 871 censors) 
Month 32.3 10.3 10.0 48.0 5.80% 

Mile 69,798 20,370 28,888 97,687  

 
The ratio of ‘failures /all %’ (all=failures + censors)’ 
in the  last column in Table 1 is an important 
parameter that gives the overall failure rate at the end 
of service time, and will be used later to compare 
with the failure rate predicted by a Weibull model at 
the same time. For example, the failure rate at the 
time of 60 months is 5%, for data ‘Old K60’, or 
5.89% for ‘New K60’ data. 
 

4. Methods of Modeling Survival and 
Failure Rates   

It is of great interest to observe the component failure 
rate, F(t), or from an opposite point of view, the 
survival probability varying over a test time, S(t), 
while there is a simply relationship between the two: 
‘S(t)= 1 – F(t)’, i.e., 20% failures means 80% 
survival rate among a fixed sample.    
 
One of the most useful tools to compare the survival 
probability over time is a method proposed by 
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Kaplan and Meier 1. The Kaplan-Meier survival 
curve is described by the following formula: 
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Where ‘di‘ is ‘deceased’ subject or failed automotive 
component, and ‘si‘ is the ‘survivor’ or ‘alive’ 
component, and ‘ni ‘ is the total (both failed and 
suspension components) in the study at any moment 
beyond time zero. 
 
Or, turning the problem around, the failure 
probability over test time, F(t), equal to ‘1-S(t)’, it 
can be further expressed by following Eq. (2)  in 
Weibull model 2: 

βη )/(1)( tetF −−=                    (2)  

Or, equivalently it can be visualized by the following 
‘linear’ transformation, as Eq. (3): 2 
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In the above Eq.(3), S(t) is survival function, which 
can be estimated from the Kaplan-Meier curve 
discussed earlier, and F(t) of Eq. (2) is the 
accumulation of failure probability as time increases, 
here ‘β’ is regarded as the ‘Slope’ of the ‘linear’ plot, 
or ‘Shape’ parameter, and ‘η’ is a ‘Scale’ parameter 
and is related to the intercept of the ‘linear’ plot.  
 
When a plot of test data is not visualized as a ‘linear’ 
plot as Eq. (3), especially at the earlier time stage, a 
Weibuull with three parameters, as Eq. (4), provides 
a better data fitting, where a time shift, or threshold, 
t0, is included as Eq. (4) -  
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Three cases are studies in details using above Eq. (1) 
to (4), from some investigation data and examples, as 
shown as following Sections 5, where Case1 
compares the reliability curves over time of two 
different conditions; and Cases 2-3 applies Weibull 
models, with two or three parameters, for data fitting 
and future trend predictions.  
 
Computing procedures by SAS Institute,  ‘LifeTest’, 
‘LifeReg’, and ‘Reliability’, are used for calculations 
3.  Some extra attentions should be paid to - how to 
clean the time data using SAS program; to determine 
the test interval from start to end; to convert the time 
data from calendar time (with different starting time 
each)  to study time where all subjects have the same 
starting time; and to determine the relative status of 
‘censor’ over time. 1 ,3  

5. Case Studies of Modeling Survival 
and Failure Rates  

Case 1: Compare Survival Rates Over Time 
of Two different Conditions  

It is often required to investigate automotive 
component reliability or survival rates over time 
under two different conditions, either manufactured 
during different time periods, or, by two different 
designs, or being used under different environmental 
conditions.  

Here is one example of discussing ‘failed event’ and 
‘censor’ within the research time window and beyond 
– there are 234 failures from data set of ‘Old K60’ 
within the study time of 60 months, however, the 
‘Suspension’ or ‘Censored’ 4483 observations have 
service time beyond the ‘Cut-Off’ line of 60 months, 
and their future statuses beyond 60 months are 
unknown (see Figure 1).  
 
 

 
 
 
In this project, the research time frame  is ‘0-60’ 
months (warranty duration or other agreement), some 
components have test time less than 60 months 
without failures, and they are treated as ‘censored’ 
data; all ‘suspension’ data are still ‘alive’ without 
failures beyond 60 months (‘Censors’, or ‘0’), and 
their service time are all assumed to be at least 60 
months. On the other hand, all ‘failed’ data (234 
failures, coded as ‘1’) have specific time of failures 
for each, prior to 60 months (Figure 1).  
 

Figure 1: Research Time Window, censor & 
failures 
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The following Kaplan-Meier life curves (Figure 2), 
using ‘Old K60’ failed data only, are studied in detail 
to verify if the reliability of products built during 
‘Period A’ might be different from the reliability of 
products built at other time.  
 
Figure 2 indicates that no significant difference of 
reliability is observed between the products built 
during ‘Period-A’ (orange color) and other dates 
(‘blue’ or ‘0’). The log-rank test, which compares 
two survival rate curves over time,  provides a p-
value of 21% for the two Kaplan-Meier plots of 
Figure 2, where ‘X-axis’ has a unit of ‘month’ and 
‘Y-axis’ displays the probability from zero to 1.0. 
 
   

 
 
Figure 2: Survival Plots of Component built 
during ‘Period_A’ (Orange Color) vs. Other 
Dates. 
 
 
On the other hand, a significant difference (p-value 
<0.0001) of reliability is observed (Figure 3), from 
the failed data of another automotive component 
whose mileage (X-axis) information for each is 
available, under two different using conditions (1673 
failures under Condition-A, and 531failures under 
Condition-B). 
 
 

 
Figure 3: Survival Plots of Two Groups with two 
Using Conditions, p-value<0.0001 
 
One useful feature of the Kaplan-Meier life curve is 
to permit comparison of the survival rates over time 
between two different conditions, and evaluate the 
effect of one single factor (such as manufacturing 
time as Figure 2, or using condition as Figure 3) on 
reliability, if more risk factors are considered 
simultaneously, the Cox proportional hazard model is 
a better tool to evaluate multiple risk factors 3. 
 
 
 
Case 2: Weibull Modeling with ‘Linear’ Plot 
using Different Data Sets 
 
One specific automotive component can be tested 
under different conditions, and the different tests 
(such as load or temperature) may lead to different 
failure modes. A ‘linear’ Weibull model, based on 
Eq. (2) –(3), is used first to plot the failure rates over 
time. For various tests of this same component, the 
similar approach of treating ‘failed’ events (‘1’) and 
‘censor’ data (‘0’), as Figure 1 of Case 1, is applied 
to all data sets:  ‘Old K60’, ‘New K60’, ‘New K72’ 
and ‘New K48’.  
 
Figure 4 shows the ‘linear’ plots of Weibull modeling 
of failure probability from data set of ‘Old K60’, 
where ‘X-axis’ has a unit of ‘month’ and ‘Y-axis’ 
displays the probability from zero to 1.0. 
 

Condition_A 

Condition_B 

Period_A 

month 

miles 
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Figure 4: Weibull Plot with Data of ‘Old K60’, 
where 234 are failures and 4483 are “suspension” 
 
In Figure 4, the failure rate will reach approximately 
5 percent afters 60 months, and this prediction agrees 
very well with the test result as Table 1 (the last 
column and 3rd row). On the other hand, the ‘linear’ 
Weibull model with only two parameters of ‘β’ 
(‘Slope’ or ‘Shape’) and ‘η’ (‘Scale’) does not fit the 
earlier time data very well (under 30 months), more 
discussions will be given later in ‘Case 3’, where the 
‘non-linear’ plot under 30 months will be described 
further.   
 
The data fitting results from using all data (‘failed’ 
and ‘censored’ data) and from ‘failed’ data only are 
listed in Table 2. 
 
Table 2:  Weibull Parameters and Failure Prediction     
(Two Samples out of ‘Old K60’ Data) 

Parameter 
‘Failed, (1)’ and 
‘Suspension, (0)’  

Failed data 
(‘1’) Only 

β (slope/shape) 3.04 5.24 
η  (scale) 159.8 48.2 
5% failure 60 months (*) 23 months 
 
 
When a few test data sets of the same component are 
available, it is of interest to compare the failure rates 
from using old data (Old K60), together with the 
results using new data (New K60, New 72K, and 
New 48K), as shown in Table 3.  The failure rate 
from the shortest warranty program (48 months) is 
slightly faster, which reflects the reality of 
components in use. 

Table 3:  Weibull Parameters and Failure 
Prediction (One Old & Three New Data Samples) 

parameter 
Old  
60K  

New  
60K  

New  
72K  

New  
48K  

β (shape) 3.04 2.84 1.79 2.20 

η (scale) 159.8 161.1 311.9 172.4 

5% fail. 60 mo 56 Mo 59 Mo 45 mo 

10% fail 76 mo 73 mo  88 mo 62 mo 

 
 
Figure 5 provides the Weibull modeling results using 
two data sets of ‘Old K60’ and ‘New K60’ (with the 
same warranty program) as one example. The 
predictions from the two different data sets agree 
well, and indicates that the same component fails at a 
similar rate although under two slightly different test 
modes and conditions.  
 
 

 
 
Figure 5: Compare Mean Failures (Y-axis) vs. 
Month (X-axis) from Old Data (Old K60) vs. New 
Data (New K60). 
 
 

Case 3: Improving Data Fitting and 
Prediction by Considering the Time Shift  

The Weibull ‘linear’ plot with only two parameters, 
as Figure 4, is not fitting data well enough, especially 
at the earlier time stage (time <30 months). A 
Weibull model with three parameters, shown as Eq. 
(4), provides a better fit. The data fitting parameters 
displayed in Figure 6 are for the‘Old K60’ data.  
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Figure 6: Failure (Y-axis)  vs. Month (X-axis) 
using Eq (4), ‘Old 60K’ data 
 
Furthermore, the three parameters of Figure 6 (Slope 
β=1.728, Scale η=232.82, and threshold or time-shift 
t0=18.529) are used in Eq. (4), and provides the 
future trend prediction as Figure 7.   
 

 
 
Figure 7: Mean Failure Prediction vs. Month 
using Results of Figure 6, by Eq(4), with Slope 
(1.728), Scale ( 232.82), and time-shift (18.529), 
‘Old 60K’ data. 
 
A similar Weibull curve as Figure 6 but using 
‘mileage’ for the  ‘X-axis’ is also plotted from a data 
set  ‘New K60’, and the plot of failure against 
mileage can be more intuitive and realistic sometimes 
than the similar curve of failure against time (a car 
can be kept in a garage for a long time). 
 

6. Conclusion 

• Modeling of automotive component reliability is 
a data mining and learning process at NHTSA. 
From the simple statistical description, to 
estimation of a reliability curve over time, to a 
proper mathematical model to fit the test data 
and to predict the future component failure trend. 
 

• Employing the Kaplan-Meier life curve permits 
us to compare the component reliability over 
time between two different conditions, and to 
evaluate the effect of one single factor with 
statistical reliability.     

 
• A Weibull model with two parameters (slope, β, 

and scale, η) can reasonably predict the mean 
failure with a ‘linear’ model, while a Weibull 
model with three parameters can treat some 
‘nonlinearity’ at earlier time stage much better. 
For example, about 5 percent of products fail 
when service time has reached 60 months, and 
this prediction agrees well with the known test. 

  
• The modeling results from using a few different 

test data sets from a same component provide 
meaningful comparisons, and such comparisons 
permit insights into component failure modes 
under different manufacturing regimes.  
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